A First-in-Human Phase 1 Clinical Study Evaluating Safety, Tolerability, Pharmacokinetics, Pharmacodynamics and Efficacy of the EDB+FN targeting ADC PYX-201 in Participants with Advanced Solid Tumors

Sharon Wilks¹, Benedito A. Carneiro², Gregory M. Cote³, Jason Henry⁴, Shiraj Sen⁵, Alexander Spira⁶, Frank Yung-Chin Tsai⁷, Judy S. Wang⁸, Marsha Crochiere⁹, Shui He⁹, Sondra Smyrnios⁹, Dipali Unadkat⁹, Bin Zhang⁹ and Anthony W Tolcher¹⁰.

¹NEXT Oncology, San Antonio, TX, ²Legorreta Cancer Center Brown University, Providence, RI, ³Massachusetts General Cancer Center, Boston, MA, ⁴Sarah Cannon Research Institute at HealthONE, Denver, CO, ⁵NEXT Oncology - Dallas, San Antonio, TX, United States, ⁶NEXT Virginia Cancer Specialists, Fairfax, VA, ⁷HonorHealth, Scottsdale, AZ, ⁸Florida Cancer Specialists/SCRI, Sarasota, FL, ⁹Pyxis Oncology, Boston, MA, ¹⁰Next Oncology, San Antonio, TX

Abstract #: 762

BACKGROUND

Fibronectin (FN) is a ubiquitously expressed, high-molecular-weight, extracellular matrix glycoprotein. The extra domain B splice variant of FN (EDB+FN) is a novel therapeutic target that is upregulated in the tumor microenvironment (TME) of multiple solid tumor types with restricted expression in normal tissues.

Figure 1: Expression of EDB+FN. A) Overview of extra domain B of FN (1). FN contains repeats of 3 types of domains: types I, II, and III. EDB+FN is a type III domain of 91 amino acids inserted between FN domains 7 and 8 of the oncofetal FN isoform. B) Immunohistochemistry (IHC) analysis demonstrates EDB+FN protein is highly differentially expressed in tumor stroma versus normal tissue

RATIONALE

PYX-201 is an investigational antibody-drug conjugate (ADC) consisting of an EDB+FNtargeting monoclonal antibody engineered for sitespecific conjugation to vc0101, which showed improved linker-payload stability and bystander activity in preclinical studies (2). The linkerpayload vc0101 is completely synthetic and, via a cleavable linker, delivers auristatin PF-06380101 (Aur0101), a microtubule depolymerizing agent with potent anti-mitotic and cytotoxic properties. PYX-201 induced tumor regression in xenograft mouse models of non-small cell lung cancer and pancreatic cancer. In a syngeneic model of breast cancer, a mouse analog of PYX-201 induced upregulation of PD-L1 and infiltration of CD3+ T cells in tumors (2).

The PYX-201-101 clinical trial is in progress in participants with advanced cancers (NCT05720117).

Figure 2: PYX-201 may have multiple mechanisms of action: 1) promoting cell destruction by directly binding to EDB+FN, 2) releasing payload into the TME and nearby cancer cells, and 3) potentiating immune cell infiltration upon release of the payload.

STUDY DESIGN

Design: Phase 1, first-in-human, open-label, multicenter, non-randomized, dose-escalation study

Target Population: Participants with advanced solid tumors who have relapsed, been non-responsive, or have progressed with all available therapies, with a focus on those tumor types known to have expression of the target antigen

Sample Size: Up to 45 subjects (including backfill enrollment) will be enrolled into the dose escalation cohorts

INDICATIONS

Non-small cell lung cancer	Head and Neck Squamous Cell Cancer
Pancreatic Ductal Adenocarcinoma	Ovarian cancer
Hepatocellular Carcinoma	Thyroid cancer
Soft Tissue Sarcoma	Kidney cancer

Breast Cancer (hormone receptor positive (HR+) and human epidermal growth factor receptor 2 (HER2)- breast cancer, HR- and HER2+ breast cancer, triple negative breast cancer)

OBJECTIVES

Primary Objective:

 To determine the recommended dose(s) of PYX-201 for participants with relapsed or refractory solid tumors

Secondary Objectives:

- To characterize the PK profile of PYX-201 as a single agent
- To evaluate the preliminary antitumor activity of treatment with PYX-201 at the recommended dose(s) of PYX-201
- To evaluate the immunogenicity of PYX-201 as measured by the incidence of ADAs in participants treated with PYX-201

Exploratory Objectives:

 To explore predictive and pharmacodynamic biomarkers of response to PYX-201

ENDPOINTS

Primary Endpoints:

- Dose Limiting Toxicity rate
- Incidence of adverse events characterized overall and by type, seriousness, relationship to study treatment, timing, and severity graded according to the NCI-CTCAE Version 5.0
- Change in clinical laboratory parameters, vital signs, and ECG parameters

Secondary Endpoints:

- Single-dose and multiple-dose PK parameters (such as C_{max}, t_{max}, AUC_{0-t}, AUC_τ, AUC_τ, aud t_{1/2}) for antibody and/or relevant metabolites
- Overall Response Rate
- Duration of Response
- Progression Free Survival
- Disease Control Rate (defined as Complete Response, Partial Response, or Stable Disease).
- Time to response (defined as the time from the first dose of PYX-201 to the time of response [CR/PR] first observed)
- Overall Survival
- Incidence of anti-PYX-201 antibodies

Exploratory endpoints:

 Evaluate predictive and pharmacodynamic biomarkers of response to PYX-201

STUDY PROGRESS

Enrollment opened:

• February 2023

Up to 20 sites planned to be activated in the Unites States, Spain, Belgium and the United Kingdom

ACKNOWLEDGEMENTS

We would like to thank the trial participants, principal investigators, co-investigators and study coordinators at all participating centers for their commitment and collaboration with this trial.

REFERENCES

- 1) Nishida T, Inui M, Nomizu M. Peptide therapies for ocular surface disturbances based on fibronectin–integrin interactions. Progress in Retinal and Eye Research. 2015; 47:38-63
- 2) Hooper, A. T., Marquette, K., Chang, C. P. B., Golas, J., Jain, S., Lam, M. H., ... & Sapra, P. (2022). Anti-extra domain B splice variant of fibronectin antibody–drug conjugate eliminates tumors with enhanced efficacy when combined with checkpoint blockade. Molecular Cancer Therapeutics, 21(9), 1462-1472.

