A First-in-Human Phase 1 Clinical Study Evaluating Safety, Tolerability, Pharmacokinetics, Pharmacodynamics and Efficacy of the EDB+FN targeting ADC PYX-201 in Participants with Advanced Solid Tumors

Sharon Wilks1, Benedetto A. Carneiro2, Gregory M. Coel3, Jason Henry4, Shiraj Sen5, Alexander Spiria6, Frank Yung-Chin Tsai7, Judy S. Wang8, Marsha Crochiere9, Shui He9, Sondra Symioni9, Dipali Unadkat9, Bin Zhang9 and Anthony W Tolcher10.

1NEXT Oncology, San Antonio, TX, 2Legorreta Cancer Center Brown University, Providence, RI, 3Massachusetts General Cancer Center, Boston, MA, 4Sarah Cannon Research Institute at HealthONE, Denver, CO, 5NEXT Oncology - Dallas, San Antonio, TX, United States, 6NEXT Virginia Cancer Specialists, Fairfax, VA, 7HonorHealth, Scottsdale, AZ, 8Florida Cancer Specialists/SCRI, Sarasota, FL, 9Pyxis Oncology, Boston, MA, 10Next Oncology, San Antonio, TX

BACKGROUND

PYX-201 is an investigational antibody-drug conjugate (ADC) consisting of an EDB+FN-targeting monoclonal antibody engineered for site-specific conjugation to vc0101, which showed improved linker-payload stability and bystander activity in preclinical studies (2). The linker-payload vc0101 is completely synthetic and, via a cleavable linker, delivers auristatin PF-06380101 (Aur0101), a microtubule depolymerizing agent with potent anti-mitotic and cytotoxic properties. PYX-201 induced tumor regression in xenograft mouse models of non-small cell lung cancer and pancreatic cancer. In a syngeneic model of breast cancer, a mouse analog of PYX-201 induced upregulation of PD-L1 and infiltration of CD3+ T cells in tumors (2). The PYX-201-101 clinical trial is in progress in participants with advanced cancers (NCT05720117).

STUDY DESIGN

Design: Phase 1, first-in-human, open-label, multicenter, non-randomized, dose-escalation study

Target Population: Participants with advanced solid tumors who have relapsed, been non-responsive, or have progressed with all available therapies, with a focus on those tumor types known to have expression of the target antigen

Sample Size: Up to 45 subjects (including backfill enrollment) will be enrolled into the dose escalation cohorts

INDICATIONS

- Non-small cell lung cancer
- Head and Neck Squamous Cell Cancer
- Pancreatic Ductal Adenocarcinoma
- Ovarian cancer
- Hepatocellular Carcinoma
- Thyroid cancer
- Soft Tissue Sarcoma
- Kidney cancer
- Breast Cancer (hormone receptor positive (HR+)) and human epidermal growth factor receptor 2 (HER2+ breast cancer, HR+ and HER2+ breast cancer, triple negative breast cancer)

OBJECTIVES

Primary Objective: To determine the recommended dose(s) of PYX-201 for participants with relapsed or refractory solid tumors

Secondary Objectives:
- To characterize the PK profile of PYX-201 as a single agent
- To evaluate the preliminary antitumor activity of treatment with PYX-201 at the recommended dose(s) of PYX-201
- To evaluate the immunogenicity of PYX-201 as measured by the incidence of ADAs in participants treated with PYX-201

Exploratory Objectives:
- To explore predictive and pharmacodynamic biomarkers of response to PYX-201

ENDPOINTS

Primary Endpoints:
- Dose Limiting Toxicity rate
- Incidence of adverse events characterized overall and by type, seriousness, relationship to study treatment, timing, and severity graded according to the NCI-CTCAE Version 5.0

Secondary Endpoints:
- Single-dose and multiple-dose PK parameters (such as C_{max}, $AUC_{0-\text{INF}}$, AUC_{INF}, and $t_{1/2}$) for antibody and/or relevant metabolites
- Overall Response Rate
- Duration of Response
- Progression Free Survival
- Disease Control Rate (defined as Complete Response, Partial Response, or Stable Disease)
- Time to response (defined as the time from the first dose of PYX-201 to the time of response [CR/PR] first observed)
- Overall Survival
- Incidence of anti-PYX-201 antibodies

STUDY PROGRESS

Enrollment opened:
- February 2023

Up to 20 sites planned to be activated in the United States, Spain, Belgium and the United Kingdom

REFERENCES

1) Natha T, Hu M, Nomizu M. Peptide therapies for ocular surface disturbances based on fibronectin-integrin interactions. Progress in Retinal and Eye Research. 2015; 47:38-63