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ABSTRACT

A hybrid immunoaffinity LC-MS/MS assay was developed and validated for the quantitation of total antibody
(TAb) from an antibody drug conjugate (ADC) PYX-201 in human plasma. PYX-201 was proteolyzed using
trypsin, and a characteristic peptide fragment PYX-201 P1 with ten amino acids IPPTFGQGTK from the
complementarity-determining regions (CDRs) was used as a surrogate for the quantitation of the TAb from PYX-
201. Stable isotope labelled (SIL) peptide I(*3Cs, 1°>N)PPTFG(*3Co, >N)QGTK was used as the internal standard
(IS). We performed chromatographic analysis using a Waters Acquity BEH Phenyl column (2.1 mm x 50 mm, 1.7
um). Quantification of PYX-201 TAb was carried out on a Sciex triple quadrupole mass spectrometer API 6500
using multiple reaction monitoring (MRM) mode with positive electrospray ionization. To validate PYX-201
TAD, a concentration range of 0.0500 pg/mL to 20.0 pg/mL was used, yielding a correlation coefficient (r) of >
0.9947. For intra-assay measurements, the percent relative error (%RE) ranged from -23.2% to 1.0%, with a
coefficient of variation (%CV) of < 14.2%. In terms of inter-assay measurements, the %RE was between —10.5%
and —5.7%, with a %CV of < 12.7%. The average recovery of the analyte was determined to be 81.4%, while the
average recovery of the internal standard (IS) was 97.2%. Furthermore, PYX-201 TAb demonstrated stability in
human plasma and human whole blood under various tested conditions. This assay has been successfully applied
to human sample analysis to support a clinical study.

1. Introduction

therapeutics. To date, 13 ADCs have been approved by U.S. FDA for solid
tumors and hematological malignancies and over 100 ADC candidates

The intellectual underpinnings of modern chemotherapeutics were
proposed >100 years ago by Nobel Prize winner Paul Ehrlich [1]. The
evolution of molecular biology, genetics, and bioanalytics continues to
drive the field of chemotherapeutics ever closer toward the realization of
Ehrlich’s vision of “magic bullets”, i.e., compounds that can selectively
target and cure diseases. After more than a century, in the year 2000, the
U.S. Food and Drug Administration (FDA) approved the first “magic
bullets” — an ADC drug Gemtuzumab ozogamicin (marketed as Mylo-
targ) for treatment of acute myeloid leukemia [2-4]. This approval
heralded the beginning of the ADC era of cancer research and
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have been investigated in clinical stages [3,5-8]. ADCs like Mylotarg are
composed of three primary parts: an antigen-specific monoclonal anti-
body (mAb), a cytotoxic small-molecule drug (payload or warhead), and
a uniquely designed linker molecule that covalently connects the mAb
and warhead and balances the toxicity, stability, and the overall efficacy
of the ADC drugs [9-14]. That is, an ideal ADC effectively delivers the
warhead to targeted tumor cells [10], resulting in improved efficacy
with less toxicity for normal, non-target cells. In vivo, ADCs attach to
cellular surface antigens (e.g., overexpressed proteins, like human
epidermal growth factor receptor 2 (HER2) or nectin4), where they may
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be internalized by the target cell. Upon release, the cytotoxic warhead is
free to bind molecular targets, e.g., tubulin or DNA. For non-
internalizing ADCs, the mechanism of cell death has been linked to
the bystander effect [6,15-16].

As mentioned, ADCs consist of several molecular components, which
can have different pharmacokinetic (PK) profiles impacting the overall
safety and efficacy of the biotherapeutic, hence the reason for multiple
PK assays that monitor major ADC components: total ADC, free payload,
and total antibody (TAb). Explicitly, the TAb assessment is performed to
quantify the amount of antibody present in the sample, providing crucial
information about the conjugation efficiency, stability, and dosage ac-
curacy of the ADC formulation. Comparative evaluation of TAb and total
ADC PK profiles provides additional critical information on the rate of in
vivo ADC drug loss, i.e. greater congruence between TAb and total ADC
PK curves would suggest good linker stability and minimal in vivo loss of
payload from the ADC [17-18]. Ultimately, this TAb assay helps ensure
that the desired amount of antibody is present to effectively target the
intended antigen.

PYX-201 (Fig. 1) is an investigational ADC, composed of a fully
human IgG1 antibody (Table 1), a cleavable linker mcValCitPABC, and
toxic auristatin payloads Aur0101 with drug antibody ratio (DAR) of
approximately 4. The backbone antibody of PYX-201 specifically targets
the extra domain B splice variant of fibronectin (EDB + FN), making
PYX-201 an attractive oncology drug candidate since target EDB + FN
expresses low in normal adult vasculature while specifically accumu-
lates in new blood vessel stroma in solid tumors [19]. PYX-201 is
currently under a first-in-human (FIH) phase I clinical trial for patients
with advanced solid tumors (NCT05720117, https://www.clinicaltrials.
gov, EudraCT Number: 2022-002284-30). To fully characterize the
distribution of PYX-201 ADC components, PK assessments of total ADC,
free payload, and TAb were conducted. In previous publications, we
discussed the validation of a hybrid immunoaffinity LC-MS/MS assay for
PYX-201 total ADC quantitation in human plasma [20], the validation of
an LC-MS/MS assay for the quantitation of free payload from PYX-201 in
human plasma [21], as well as the validation of a bioanalytical enzy-
me-linked immunosorbent assay (ELISA) for PYX-201 TAb quantitation
in rat and monkey plasma [22]. Here, we report a bioanalytical assay
development and validation for quantitation of TAb from PYX-201 in
human plasma using a hybrid immunoaffinity LC-MS/MS assay. A
characteristic peptide fragment originating from the complementarity-
determining regions (CDRs) was used as a surrogate for the quantita-
tion of TAb from PYX-201 in this assay. This assay was validated under
regulatory guidance [23-24] and has been successfully applied in clin-
ical sample analysis.

2. Experimental
2.1. Chemicals and reagents

PYX-201 and a recombinant form of EDB + FN, human FN-7-EDB-89
were produced by WuXi Biologics (Shanghai, China). Surrogate analyte

peptide PYX-201 P1 (HPLC purity > 95%) with amino acid sequence
IPPTFGQGTK and the stable isotope labelled internal standard (SIL-IS) I
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Fig. 1. Structure of PYX-201 drug substance.
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(13cq, N)PPTFG(*3Cy, N)QGTK (HPLC purity > 95%) were manu-
factured at Elim Biopharmaceuticals (Hayward, CA, USA). HPLC grade
water, HPLC grade acetonitrile, HPLC grade methanol, DL-
dithiothreitol, and iodoacetamide were produced by Sigma-Aldrich
(St. Louis, MO, USA). Streptavidin Mag Sepharose beads were ac-
quired from Cytiva (Marlborough, MA, USA). Biotin antigen (human
EDB + FN) bound streptavidin magnetic beads were produced in PPD
Laboratories Services (Henrico, VA, USA). Mass spectrometry (MS)
grade Pierce trypsin protease was obtained from ThermoFisher Scien-
tific (Waltham, MA, USA). Ammonium bicarbonate and hydrochloric
acid were ordered from VWR international (Radnor, PA, USA). RapiGest
SF surfactant was bought from Waters (Milford, MA, USA). Tris buffered
saline (TBS)-wash buffer (20 x, pH 7.4) and TBS-tween 20 (20 x, pH
7.4) were supplied by Boston BioProducts (Milford, MA, USA). Dipo-
tassium EDTA human plasma was purchased from BioIVT (Westbury,
NY, USA).

2.2. LC-MS/MS system

A Sciex API 6500 triple quadrupole mass spectrometer (Sciex, Fra-
mingham, MA, USA) coupled with Agilent 1200 or 1100 binary pumps
(Agilent technologies, Santa Clara, CA, USA) and CTC analytics PAL
DLW autosampler (Leap technologies, Carrboro, NC, USA) were applied
in this LC-MS/MS assay validation. A Waters Acquity BEH Phenyl, 2.1
mm x 50 mm, 1.7 um column (Waters, Milford, MA, USA) was utilized
for the chromatographic separation.

2.3. Preparation of calibration standards and quality control (QC)
samples

Stock solution of PYX-201 at 15.2 mg/mL was supplied in 20 mM
histidine with 6% (w/v) sucrose and 0.02% (w/v) PS80 at pH 5.5. PYX-
201 stock solution was spiked into human K,EDTA plasma to produce
calibration standard at nominal PYX-201 concentrations of 0.0500,
0.100, 0.160, 0.600, 2.00, 6.50, 16.0, and 20.0 pg/mL and QC samples at
nominal PYX-201 concentrations of 0.0500 (LLOQ), 0.150 (LQC), 10.0
(MQC), and 15.0 pg/mL (HQC). Pools were prepared using protein low-
binding containers. Calibration standards, QC samples from one accu-
racy and precision run, and QC samples from all matrix stability runs
were freshly prepared on the day of use during this assay validation. All
other QC samples were stored frozen until use. Calibration standards
were analyzed at the beginning and the end of each run and QC samples
were analyzed in four runs for accuracy and precision evaluation.

2.4. Sample processing

Human plasma samples were thawed on ice. 300 L of loading buffer
(TBS-tween 20 diluted 1:20 in water) was mixed well with 10 uL of the
thawed human plasma sample in a 96-well protein LoBind plate. 25 pL
of washed biotin antigen (human EDB + FN) bound streptavidin mag-
netic beads were added and the sample mixture was vortexed overnight
at 4 °C. PYX-201 TAD analytes absorbed on magnetic beads were washed
three times with 300 uL of the washing buffer (TBS-wash buffer 1:20
diluted in water), then dissolved in a well preloaded with 50 uL of
RapiGest solution (0.05/37.5/10 RapiGest/50 mM ammonium bicar-
bonate/ACN), 40 uL of 50 mM ammonium bicarbonate, 10 pL of 0.1 M
dithiothreitol solution, and 10 uL of the IS working solution (10 uL of
methanol in blank samples without IS), and vortexed at 90 °C for
approximately 30 min with shaking. Under yellow light, 25 uL of 0.1 M
iodoacetamide in 50 mM ammonium bicarbonate was added in each
well, and the sample mixture was incubated at room temperature for
approximately another 30 min. 10 pL of 0.250 mg/mL trypsin solution
was added in each sample and the sample plate was incubated at 37 °C
for approximate 120 min with shaking. 15 uL of 2 N HCl was added to
each well and the sample plate was vortexed for 5 min to end the
digestion. All samples were filtered using a Multiscreen high throughput
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Table 1
Amino acid sequence of TAb from PYX-201.
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TAD from PYX-201 — light chain

EIVLTQSPGTLSLSPGERATLSCRASQSVSSSFLAWYQQKPGQAPRLLIYYASSRATGIPDRFSGSGSGTD
FTLTISRLEPEDFAVYYCQQTGRIPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP
REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSCADYEKHKVYACEVTHQGLSSPVTKSFNRG

EC

CDRs underlined, engineered cysteine for site-specific conjugation: K183C (Kabat and EU numbering).

TAD from PYX-201 — heavy chain

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFSMSWVRQAPGKGLEWVSSISGSSGTTYYADSVKGRFTIS
RDNSKNTLYLQMNSLRAEDTAVYYCARPFPYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALG
CLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK
VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVH
NAKTCPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRE
EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV

MHEALHNHYTQKSLSLSPG

CDRs underlined, K(H94)R putative Vy glycation sequence liability removed, engineered cysteine for site-specific

conjugation: K290C (EU numbering) or K307C (Kabat numbering).

screening (HTS) filter plate by centrifuging at 4 °C for 5 min and sub-
mitted for LC-MS/MS. LC-MS/MS conditions were optimized and sum-
marized in Table 2.

3. Results and discussion
3.1. Method development

The TADb concentration is the sum of the naked and conjugated
antibody concentrations. At its core, the TAb PK assay is an evaluation of
ADC stability. By the comparison with total ADC concentration, the TAb
PK profile can be used to evaluate the linker and payload stability. This
assay uses bead-based immunocapture (streptavidin magnetic beads
with biotinylated antigen) to pulldown and enrich the target PYX-201
mAbs. Consequently, this assay will not capture target PYX-201 mAbs
if both antibody arms (Fab regions) are already antigen bound. As such,
we define the term TAD to describe and encompass antibodies with at
least one unbound Fab region, i.e. free and partially-free mAbs.

Table 2
LC-MS/MS assay conditions for TAb from PYX-201.

Chromatography Settings

Analytical column Acquity BEH Phenyl, 2.1 mm x 50 mm, 1.7 um,
Waters

Column temperature 60 °C

Mobile phase A 100:0.1 Water:formic acid

Mobile phase B 100:0.1 ACN:formic acid

Autosampler wash 1 100:0.1 ACN:formic acid

Autosampler wash 2 100:0.1 Water:formic acid

Program Gradient

Time (min) 0O 05 30 31 41 52 7
%B 5 5 40 95 95 5 Stop
Flow rate 0.3 mL/min

Auto-injector temperature 4°C

Injection volume 25 L

Retention time ~2.3 min

Mass Spectrometer Settings
Mass Spectrometer
Ionization Mode

MRM Mass Transitions

Sciex 6500, triple quadrupole LC-MS/MS

ESI+, MRM

523.5 — 835.6 for IPPTFGQGTK as the surrogate
analyte for TAb from PYX-201

532.0 — 845.7 for I(*3Cg, >N)PPTFG(*3Cy, 1°N)QGTK

Source Temperature (TEM) 650 °C
Collision Gas (CAD) 9 psig Ny
Curtain Gas (CUR) 30 psig Ny
Ton Source Gas 1 (GS1) 90 psig Ny
Ton Source Gas 2 (GS2) 90 psig Ny
Ion Spray Voltage (IS) 5000 V
Entrance Potential (EP) 8V
Declustering Potential (DP) 50 V
Collison Energy (CE) 20V

Cell Exit Potential (CXP) 20V

Owing to the inherent selectivity, specificity, and sensitivity of the
platform, LC-MS/MS has been widely used in bioanalysis in drug
research for both small molecules [25-28] and large molecule biologics
[17,29-36]. LC-MS/MS platform was employed to analyze TAb from
PYX-201 in this assay validation. An immunoaffinity approach was
applied to enrich TAb from PYX-201 from human plasma using Strep-
tavidin Sepharose magnetic beads and biotinylated EDB + FN. Because
TAb from PYX-201 is too large with a molecular weight approximately
150 k Dalton for a practical direct quantitative analysis using LC-MS/MS
technology, the bound proteins were subjected to “on-bead” proteolysis
using trypsin, following standard protein denaturation, reduction, and
alkylation processing steps. As a result of the digestion, a characteristic
peptide originating from the CDRs (Table 1) was used as a surrogate for
the quantitation of the TAb from PYX-201. We screened numerous
candidate CDR fragments and ultimately chose two peptides for further
evaluation: PYX-201 P1 with ten amino acids IPPTFGQGTK and PYX-
201 P2 with nine amino acids LLIYYASSR. PYX-201 P1 was eventually
determined to be the final surrogate analyte due to the better accuracy
and precision and low background in the LC-MS/MS chromatogram.
PYX-201 P2 (MRM mass transitions 543.5 — 746.5) was still monitored
in the assay validation, only for the purpose of assay monitoring and
troubleshooting.

PYX-201 P1, PYX-201 P2, and their corresponding SIL-ISs were
weighed and dissolved in solvent. These reference solvent standards
were directly tuned into the mass spectrometry for optimized MS con-
ditions, and injected into the high performance liquid chromatography
(HPLC) system to adjust the retention time and potential carryover is-
sues. A Waters Acquity BEH Phenyl column was used for chromato-
graphic separation and Sciex triple quadrupole 6500 mass spectrometer
was employed for the MS detection. Optimized HPLC and MS conditions
are summarized in Table 2.

3.2. LC-MS/MS conditions

HPLC conditions were summarized in Table 2. A quadratic regression
with 1/x® weighting factor was employed in the calibration curve
regression. The mass spectrometer was operated on Sciex triple quad
6500 mass spectrometer using electrospray ionization (ESI) in the pos-
itive ion mode. Data were acquired and processed on ASSIST LIMS
(Version 7, PPD Laboratories Services, Richmond, VA, USA), Analyst
software (Version 1.6.3, Sciex, Framingham, MA, USA), and MultiQuant
(Version 3.0.3, Sciex, Framingham, MA, USA). Multiple ions were
detected for the surrogate analyte IPPTFGQGTK and the IS 1(*3Ce, 1°N)
PPTFG(*3Cs, '>N)QGTK in Q1 scan and product ion scan. MRM mass
transitions 523.5 — 835.6 and 532.0 — 845.7 were eventually selected
based on the MS signal to noise ratio (S/N) for the surrogate analyte and
the IS, respectively. Detailed MS conditions were summarized in Table 2.
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3.3. Acceptance criteria

This LC-MS/MS assay was validated under regulatory guidance
[23-24] in terms of selectivity, linearity, accuracy and precision, dilu-
tion integrity, stability, recovery, matrix effect, hemolysis effect, lipemia
effect, reinjection reproducibility, and run length evaluation, etc. There
are three steps in this hybrid assay: immunoaffinity of TAb from PYX-
201 to magnetic beads, digestion of TAb from PYX-201 to generate a
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signature peptide, and LC-MS/MS of the signature peptide as a surrogate
analyte [37-40]. Due to the involvement of an immunoaffinity enrich-
ment in the assay, acceptance criteria of %CV < 25% and %RE within +
25% at the LLOQ level, and %CV < 20% and %RE within 4+ 20% at the
other calibration standards or QC levels were pre-set at the beginning of
the assay validation.
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Fig. 2. Chromatograms of PYX-201 P1 IPPTFGQGTK (top) as the surrogate analyte for TAb from PYX-201 and IS I(*3*Cs, *>N)PPTFG(*3Co, >N)QGTK (bottom) from a

blank human K;EDTA plasma sample containing IS.
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3.4. Range and sensitivity

Calibration standards were prepared by fortifying blank matrix pools
with the appropriate amount of standard solution to obtain the desired
concentration or by diluting higher concentration matrix pools with
additional blank matrix. Non-matrix components (solvent, buffers, etc.)
added to the matrix during pool preparation comprised < 5% of the final
pool volume. Calibration standards were freshly prepared at 0.0500,

Analyst Version: 1.6.3 MultiQuant Version: 3.0.3

Sample Name:
12/29/2022

8:44-35 PM Modified: False

Acq. Date & Time:
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Peak Splitting Factor: 2 points

RT Window: 0.5

Retention Time: 2.29
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0.100, 0.160, 0.600, 2.00, 6.50, 16.0, and 20.0 pg/mL for each run. The
LLOQ in this assay was determined to be 0.0500 pg/mL for TAb from
PYX-201 in human plasma. Calibration standards were analyzed in
duplicate over the nominal TAb from PYX-201 concentration range of
0.0500 to 20.0 ug/mL in seven separate runs. The correlation coefficient
(R) was > 0.9947. A quadratic, 1/concentration® weighted, least-
squares regression algorithm was used to plot the peak area ratio of
the analyte to its IS versus concentration. A representative
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Fig. 3. Chromatograms of PYX-201 P1 IPPTFGQGTK (top) as the surrogate analyte for TAb from PYX-201 and IS I(*3Cs, >N)PPTFG(**Co, '>N)QGTK (bottom) from

an LLOQ sample in human K;EDTA plasma.
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chromatogram from a blank matrix spiked with IS and a representative
chromatogram from an LLOQ sample in human K;EDTA plasma are
presented in Fig. 2 and Fig. 3, respectively. The obvious high signal to
noise ratio (S/N) in the LLOQ chromatogram indicates good sensitivity
at the LLOQ 0.0500 pg/mL.

3.5. Accuracy and precision (A & P)

Quality control (QC) samples were prepared by fortifying human
plasma pools with PYX-201, and QC samples were employed to assess
the assay accuracy and precision. QC samples were prepared at LLOQ
(0.0500 pg/mlL), LQC (0.150 pg/mL), MQC (10.0 pg/mL), and HQC
(15.0 pg/mL), and six replicates of each QC level in four runs were
analyzed to calculate the intra- and inter-run accuracy and precision.
Accuracy and precision were evaluated in four QC levels (LLOQ, LQC,
MQC, and HQC) in six replicates from four separate runs. Accuracy was
expressed in percent relative error (%RE) to the nominal concentrations
and precision was measured as percent coefficient of variation (%CV) of
each QC pool. Accuracy and precision data are summarized in Table 4.
For all QC levels, the intra-run %RE ranged from -23.2% to 1.0%, with
%CV between 2.4% and 14.2%, and the inter-run %RE was from -10.5%
to —5.7%, with %CV between 7.2% and 12.7%. Typically, accuracy and
precision were evaluated across three runs. However, during the second
run, the observed %RE at the HQC level was slightly outside acceptance
limits (%RE = -20.1%). Accordingly, accuracy and precision were
evaluated with another set of QCs in a fourth run. The %CV and %RE
values for all QCs in the fourth run met the acceptance criteria. Thus,
assay accuracy and precision were deemed acceptable (Table 4).

Due to the complexity of the assay, a slightly low intra-run %RE at
—20.1% was observed on HQC in run 2, however, the integrity of the
assay was not impacted.

3.6. Selectivity

Multiple independent sources of control matrix were evaluated to
ensure performance of the assay is not compromised by variations in
matrix-related background. Human plasma from six individual lots were
extracted and analyzed (n = 1) for TAb from PYX-201 and the IS in blank
samples and blank with the IS samples. Additional samples, fortified
PYX-201 in order to yield TAb at 0.0500 pg/mL were prepared from the
same six individual human plasma lots and analyzed (n = 3) to evaluate
potential matrix suppression or enhancement effects.

As is depicted in a typical blank sample in Fig. 2, the response of an
interfering chromatographic background peak present at the expected
retention time of the IS was < 5% of the mean chromatographic response
determined for the IS in the specificity samples fortified with IS. As is
observed in a typical blank sample spiked with IS in Fig. 3, the response
ratio (interfering background peak response / IS peak response)
measured in all blank six matrix lots spiked with IS was < 20% of the
mean response ratio determined from the corresponding analyte in the
acceptable LLOQ calibrator samples for each run. There were no sig-
nificant interfering chromatographic peaks that would interfere with
quantitation. Selectivity data at LLOQ level are displayed in Table 3.
There were no significant matrix suppression or enhancement effects

Table 3
Fortified selectivity evaluation for TAb from PYX-201 in human K;EDTA plasma.
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based on the observation that at least two-thirds of replicates for each of
the six lots quantitated within + 25.0% of the nominal value.

3.7. Dilution linearity

The ability of this assay to dilute samples originally above the upper
limit of the calibration range was validated by analyzing six replicate
QCs, containing 100 pg/mL TAb as 10-fold dilutions. As is shown in
Table 5, dilution QC results met the acceptance criteria required in the
regulatory guidance [23-24], effectively demonstrating that human
plasma samples with concentrations of TAb from PYX-201 higher than
ULOQ 20.0 pg/mL can be diluted 10-fold with no negative impact on
assay performance or analyte quantitation.

3.8. Stability assessment

LQC and HQC samples were stored at different conditions for sta-
bility test. Bench top stability, freeze/thaw stability, long-term stability,
extract stability, and whole blood stability were assessed in this assay
validation. Bench-top stability was assessed on a set of frozen LQC and
HQC samples that were thawed and remained on ice for 25.6 h prior to
extraction and analysis. Freeze/thaw stability was evaluated on LQC and
HQC samples that have endured five freeze (-25 °C or —-80 °C)/thaw (on
ice) cycles. Long-term stability was appraised on two sets of LQC and
HQC samples that have been stored at —25 °C or -80 °C for 25 days.
Extract stability was tested on LQC and HQC samples that have been
analyzed and stored at 4 °C for approximately 432.4 h prior to reanalysis
with freshly prepared calibrators. Whole blood stability was assessed at
approximate low and high concentrations by the comparison of the peak
area ratios of the tested LQC and HQC samples after being stored at room
temperature or at 4 °C for up to two hours to those of the control LQC
and HQC samples that were processed immediately in a centrifuge set at
4°C.

The acceptance criteria for bench top stability, freeze/thaw stability,
long-term stability, and extract stability are %CV at each QC level be <
20.0% and that %RE at each QC level be within + 20.0% from the
nominal concentration. All stability QC samples met the acceptance
criteria. TAb from PYX-201 was stable for at least 25.6 h on ice, after at
least five cycles of freeze (-25 °C or —-80 °C)/thaw (on ice), for at least 25
days after being stored at —25 °C or —80 °C. TAb from PYX-201 extract
was stable for at least 432.4 h after being stored at 4 °C. The acceptance
criteria for whole blood stability are the %difference from control QC
samples be < 20.0% with %CV at each QC level within 20%. All whole
blood stability QC samples met the acceptance criteria. TAb from PYX-
201 is stable for at least two hours after being stored at room temper-
ature or in an ice bath then processed to plasma in a centrifuge set at
room temperature or 4 °C.

3.9. Recovery

Recovery was evaluated on the immunoaffinity capture efficiency of
the analyte at LQC, MQC, and HQC levels and on the non-specific
binding of the IS PYX-201 SIL-IS P1 at the working level from human
plasma by comparing the analyte or IS responses of pre-capture fortified

Lot 1 (ug/mL) Lot 2(ug/mL) Lot 3 (ug/mL) Lot 4 (ug/mL) Lot 5 (ug/mL) Lot 6 (ug/mL)

Replicate 1 0.0502 0.0502 0.0628* 0.0547 0.0509 0.0493
Replicate 2 0.0499 0.0528 0.0560 0.0698* 0.0559 0.0504
Replicate 3 0.0522 0.0515 0.0601 0.0545 0.0548 0.0532
n 3 3 3 3 3 3

Nominal concentration (ug/mL) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
Low limit (ug/mL) 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375
High limit (ug/mL) 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

" Outside specified limits; n: number.
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Table 4
Accuracy and precision for TAb from PYX-201 in human K>EDTA plasma.
Run LLOQ (0.0500 LQC (0.150 MQC (10.0 HQC (15.0
Number pg/mL) pg/mL) pg/mL) pg/mL)
1 0.0495 0.150 8.44 14.1
0.0473 0.129 9.02 12.9
0.0511 0.138 8.22 14.0
0.0478 0.133 8.42 13.5
0.0497 0.148 8.32 14.4
0.0416 0.128 8.20 14.6
Intra-run 0.0478 0.138 8.44 13.9
Mean
Intra-run S. 0.00337 0.00933 0.300 0.631
D.
Intra-run % 7.0 6.8 3.6 4.5
Ccv
Intra-run % —4.3 -8.3 -15.6 -7.3
RE
n 6 6 6 6
2 0.0415 0.134 8.87 12.8
0.0454 0.145 8.89 9.78
0.0393 0.139 8.58 12.4
0.0395 0.133 8.54 11.4
0.0347 0.132 9.10 12.5
0.0298 0.127 8.80 13.0
Intra-run 0.0384 0.135 8.79 12.0
Mean
Intra-run S. 0.00545 0.00630 0.210 1.21
D.
Intra-run % 14.2 4.7 2.4 10.1
Ccv
Intra-run % -23.2 -10.0 -12.1 —20.1
RE
n 6 6 6 6
3 0.0453 0.130 7.80 12.3
0.0485 0.150 9.08 13.5
0.0498 0.137 9.00 13.7
0.0475 0.142 9.22 14.1
0.0478 0.145 9.87 14.6
0.0507 0.147 9.93 13.9
Intra-run 0.0482 0.142 9.15 13.7
Mean
Intra-run S. 0.00190 0.00714 0.774 0.788
D.
Intra-run % 3.9 5.0 8.5 5.8
Ccv
Intra-run % -3.5 -5.5 —-8.5 —-8.8
RE
n 6 6 6 6

Accuracy and precision for TAb from PYX-201 in human K,EDTA plasma (continued)

Run LLOQ(0.0500 LQC(0.150 MQC(10.0 HQC(15.0
Number pg/mL) pg/mL) pg/mL) pg/mL)
4 0.0531 0.164 8.02 13.1
0.0447 0.141 9.84 14.9
0.0492 0.181 9.36 14.5
0.0507 0.145 9.53 13.3
0.0544 0.154 9.86 15.1
0.0496 0.124 9.96 15.6
Intra-run 0.0503 0.152 9.43 14.4
Mean
Intra-run S. 0.00340 0.0197 0.727 0.992
D.
Intra-run % 6.8 13.0 7.7 6.9
cv
Intra-run % 0.6 1.0 —5.7 —-4.0
RE
n 6 6 6 6
Inter-run 0.0462 0.141 8.95 13.5
Mean
Inter-run S. 0.00586 0.0128 0.648 1.27
D.
Inter-run % 12.7 9.1 7.2 9.4
cv
Inter-run % -7.6 -5.7 -10.5 -10.0
RE
n 18 18 18 18
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%CV: percent coefficient of variation; %RE: percent relative error; n: number; S.
D.: standard deviation.

Table 5
Accuracy and precision of TAb from PYX-201 in human K,EDTA plasma
for dilution QCs.

RunNumber 10-Fold dilution QC100 pg/mL
5 108
102
93.6
91.6
79.0
102
Mean 96.1
S.D. 10.4
%CV 10.8
%RE -3.9
n 6

%CV: percent coefficient of variation; %RE: percent relative error; n:
number; S.D.: standard deviation.

samples to those of post-capture fortified samples representing 100%
capture efficiency. The apparent recovery associated with the digestion
was not evaluated due to experimental design challenges that often give
erroneous digestion efficiency results. Mean recovery of TAb from PYX-
201 was 81.4% with a range of 79.1% to 84.4% for different QC levels
and mean IS recovery was 97.2%.

3.10. Matrix effect

PYX-201 requires an enzymatic digestion, and post spiking matrix
extracts using PYX-201 reference material was not feasible. Therefore, a
modified matrix effect experiment to evaluate the consistency of ioni-
zation of analytes by the presence of matrix components in the sample
extracts was conducted. Matrix effect samples from four normal human
plasma lots, two hemolyzed lots (5% hemolysis), and two lipemic lots
(>300 mg/dL triglyceride) were fortified pre-extraction to the approx-
imate LQC and HQC levels. The analyte peak area ratios were compared.
The %CV of the peak area ratios of the analyte response to the IS
response was < 20% at LQC and HQC in all the eight lots tested in matrix
effect experiment. There is no matrix effect that would impact this assay.

3.11. Hemolysis effect

The effect of hemolysis on the quantitation of TAb from PYX-201 was
evaluated by analyzing blanks, blanks with IS, LQC, and HQC in human
plasma fortified with 5% hemolyzed human whole blood. There were no
significant chromatographic peaks detected at the mass transitions and
expected retention times of the analyte in blank with and without IS
samples. There were no significant chromatographic peaks detected at
the mass transitions and expected retention times of the IS in blank
without IS samples. %CV at LQC and HQC levels was < 20.0% and %RE
at each QC level was within + 20.0% from the nominal concentration.
There was no hemolysis effect on the quantitation of TAb from PYX-201.

3.12. Lipemia effect

The effect of lipemia on the quantitation of TAb from PYX-201 was
evaluated by analyzing blanks, blanks with IS, LQC, and HQC in lipemic
human plasma with a triglyceride concentration of > 300 mg/dL. There
were no significant chromatographic peaks detected at the mass tran-
sitions and expected retention times of the analyte in blank with and
without IS samples. There were no significant chromatographic peaks
detected at the mass transitions and expected retention times of the IS in
blank without IS samples. %CV at LQC and HQC levels was < 20.0% and
%RE at each QC level was within + 20.0% from the nominal
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concentration. There was no lipemia effect on the quantitation of TAb
from PYX-201.

3.13. Capture capacity

To demonstrate a lack of impact on samples that are above the upper
limit of quantitation, the over-the-curve dilution QC was analyzed
without dilution. The percent difference between analyte to IS peak area
ratios for all replicates of the undiluted over-the-curve quality control,
and analyte to IS peak area ratios of ULOQ calibration standards was >
20% (Table 6). There is no impact on samples that are above the upper
limit of quantitation in this assay.

3.14. Reinjection reproducibility

To evaluate an analytical run’s reinjection reproducibility, calibra-
tion standards and run acceptance QC samples originally injected and
passed the acceptance criteria were stored at 4 °C and reinjected into the
LC-MS/MS system. All standard calibrators and run acceptance QC
samples were within + 20% difference from theoretical for reinjection
reproducibility. The integrity of this assay is not impacted after samples
are stored at 4 °C and reinjected.

3.15. Run length evaluation

Multiple blank human plasma samples were extracted and injected
within a run containing calibration standards and run acceptance QC
samples to mimic the expected maximum runs. There was no evidence of
system performance degradation observed over the course of an
analytical run containing a total of 96 injections.

3.16. Pharmacokinetic application

A phase I clinical trial PYX-201-101 “A first-in-human, open-label,
multicenter, phase 1 clinical study to evaluate the safety, tolerability,
pharmacokinetics, pharmacodynamics, and preliminary efficacy of PYX-
201 in participants with advanced solid tumors” is ongoing. PYX-201
was administered to patients from 0.3 mg/kg to 8 mg/kg as an intra-
venous (IV) infusion every 3 weeks (Q3W). Up to 45 patients are being
enrolled to the dose escalation cohorts. This validated assay has been
successfully applied in analyzing TAb from PYX-201 concentrations in
human KEDTA plasma samples in the clinical trial. Clinical data and PK
profiles will be reported in a separate manuscript.

4. Conclusions

A hybrid immunoaffinity LC-MS/MS assay was developed and vali-
dated for the quantitation of TAb from an ADC PYX-201 in human
plasma. TADb from PYX-201 was enriched by human FN-7-EDB-89, then
was hydrolyzed with trypsin to release a characteristic peptide fragment
PYX-201 P1 IPPTFGQGTK originating from the CDRs as the surrogate
analyte. PYX-201 P1 was quantitated on an LC-MS/MS system with the
SIL-IS of PYX-201 P1 I(*3Ce, ®N)PPTFG(*3Cy, °N)QGTK. The LC-MS/
MS system was composed of a Waters Acquity BEH Phenyl column
(2.1 mm x 50 mm, 1.7 pm) coupled with Sciex 6500 triple quadrupole
mass spectrometer. This assay was validated over the calibration range
0.0500 to 20.0 pg/mL and a quadratic calibration curve with 1/con-
centration? weight was used in the standard curve regression. The intra-
run %RE ranged from -23.2% to 1.0% with %CV between 2.4% and
14.2% and the inter-run %RE was from —10.5% to —5.7% with %CV
between 7.2% and 12.7% for all QC levels in human plasma. TAb from
PYX-201 was found to be stable in human plasma for at least 25.6 h on
ice, after five freeze (25 °C or -80 °C)/thaw (on ice) cycles, and after 25
days when stored at —-25 °C or —-80 °C. TAb from PYX-201 post-prepar-
ative extract was stable for at least 432.4 h when stored at 4 °C and TAb
from PYX-201 was stable in human whole blood for at least two hours

Journal of Chromatography B 1228 (2023) 123844

Table 6
Capture capacity of assay of TAb from PYX-201 in human K,EDTA plasma.

Peak Area Peak Area Ratio(undiluted % Difference
Ratio(ULOQ) over-the-curve QC) from ULOQ
Replicate- 13.7 43.3 216
1
Replicate- 13.8 48.5 254
2
Replicate- NA 46.9 242
3
Replicate- NA 46.7 241
4
Replicate- NA 45.0 229
5
Replicate- NA 47.2 245
6
Mean 13.7

NA, not applicable.

stored at room temperature or in an ice bath. This validated assay has
been successfully applied in human plasma sample analysis to support
an ongoing clinical trial.
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