Phase 1 Expansion Study of the First-in-Concept Extracellular Antibody-Drug Conjugate (ADC), Micvotabart Pelidotin (MICVO), in Patients with Select Advanced Solid Tumors

Desamparados Roda Perez¹, Gregory M. Cote², Anja Williams³, Daniel Ernesto Castellano Gauna⁴, Katherine Clifton⁵, Benedito A. Carneiro⁶, Judy Wang⁷, Alexander Spira⁸, Jason Henry⁹, Frank Tsai¹⁰, Victor Moreno¹¹, Sylvie Rottey¹², Enriqueta Felip¹³, Aymen Elifky¹⁴, Orlaith Bogg¹⁴, Victoria Attaya¹⁴, Marsha Crochiere¹⁴, Shui He¹⁴, Hongwei Wang¹⁴, Jean-pascal Machiels¹⁵

 Thospital Clinico Universitario de Valencia. INCLIVA Biomedical Research Institute, Valencia, Spain; Sarah Cancer Center, Boston, MA, USA; Sarah Cancer Center at Brown University, Providence, RI, USA; Sarah Cancer Center at Brown University, Providence, RI, USA; Sarah Cancer Specialists, Sarasota, FL, USA; Sarah Cancer Specialists, Fairfax, USA; Sarah Cancer Center at Brown University, Providence, RI, USA; Sarah Cancer Specialists, Sarah Cancer Specialists, Fairfax, USA; Sarah Cance 9Sarah Cannon Research Institute, HealthOne, Denver, CO, USA; 10HonorHealth Research Institute, Scottsdale, USA; 11START-FJD, Fundación Jimenez Diaz, Madrid, Spain; 12Ghent University Hospital, Gent, Belgium; 13Vall d'Hebron University Hospital, Barcelona, Spain; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 13Vall d'Hebron University Hospital, Gent, Belgium; 13Vall d'Hebron University Hospital, Barcelona, Spain; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 13Vall d'Hebron University Hospital, Barcelona, Spain; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 14Pyxis Oncology, Inc., Boston, USA, 15Cliniques Universitaires Saint-Luc (UCLouvain Saint-Luc), Brussels, Belgium; 14Pyxis Oncology, Inc., Brussels, Brusse

BACKGROUND

- Antibody-drug conjugates (ADCs) are transforming cancer therapy; combination of ADCs with checkpoint immunotherapy has also demonstrated enhanced clinical benefit in several tumor types (1, 2, 3).
- Micvotabart pelidotin (PYX-201, aka MICVO) is a first-in-concept ADC targeting extradomain-B of fibronectin (EDB+FN), a non-cellular structural component within the tumor extracellular matrix that is highly expressed in tumors compared to normal adult tissues (1).
- MICVO is composed of a fully human IgG1 monoclonal antibody conjugated to an optimized Auristatin-0101 payload via a cleavable linker (DAR of 4) (2, 4).
- EDB+FN is overexpressed in several solid tumor types yet negligibly present in healthy adult tissues, making it a promising therapeutic target (5).
- In preclinical studies, MICVO demonstrated broad anti-tumor activity in patient-derived xenograft (PDX) models across numerous solid tumor indications (6).
- A mouse analog of MICVO showed monotherapy anti-tumor activity and combination with anti-PD-1 resulted in superior tumor clearance in a syngeneic triple negative breast cancer model (7).
- MICVO as a single agent was generally well-tolerated in the Phase 1 Part 1 dose escalation study, with a low incidence of dose discontinuation, interruptions, or delays due to treatment related adverse events (TRAEs), and a low rate of Grade 3 or 4 payload-related TRAEs. (ESMO Poster 965P).
- MICVO demonstrated single-agent activity confirmed by RECIST 1.1 in heavily pretreated recurrent/metastatic HNSCC patients (cORR=50%, cDCR=100%) within the 3.6-5.4 mg/kg IV Q3W identified dose response range (ESMO Poster 965P).
- The current trial-in-progress is a Phase 1 dose-expansion study of MICVO monotherapy in patients with previously treated recurrent/metastatic HNSCC.
- A Phase 1/2 study of MICVO in combination with pembrolizumab in patients with R/M HNSCC and other advanced solid tumors is ongoing (NCT06795412).

MICVO CONSTRUCT AND MECHANISM OF ACTION (A) **Cancer associated fibroblasts Immune Cells Tumor Vasculature**

Figure 1: (A) The extradomain-B splice variant of fibronectin (EDB+FN) is a non-cellular structural component of the extracellular matrix (ECM) that is highly differentially expressed in several solid tumors. (B) MICVO is an anti-EDB+FN, fully human IgG1 mAb engineered with site-specific conjugation to Auristatin-0101 via a protease-cleavable mcVal Cit PABC linker, enhancing linkerpayload stability and reducing off-target toxicities compared to conventionally conjugated ADCs.

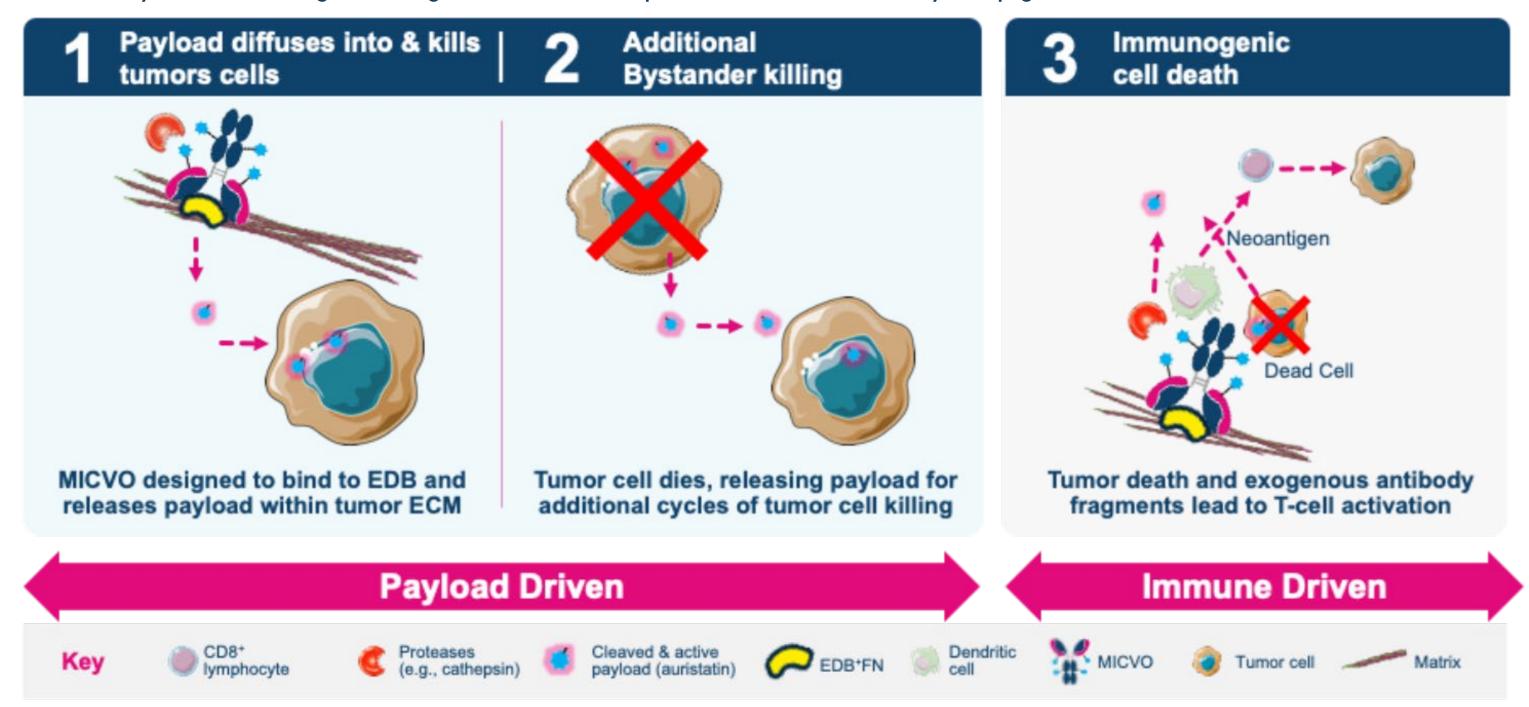


Figure 2: MICVO is designed to achieve anti-tumor activity via three mechanisms of action: 1) the cytotoxic, cell-permeable Auristatin-0101 payload directly kills tumor cells through disruption of microtubule formation, 2) the payload promotes additional tumor cell killing via the bystander effect, and 3) release of neoantigens from dying tumor cells induces immunogenic cell death.

Overview

Design: Phase 1, first-in-human, open-label, multicenter, non-randomized, dose-expansion study.

Target Population: Participants with recurrent/metastatic HNSCC tumors that have relapsed, been nonresponsive, or have progressed through select standard of care regimens.

Study Treatment: MICVO will be administered intravenously (IV) Q3W at a dose of 5.4 mg/kg. Treatment continues until radiographically documented evidence of disease progression per RECIST v 1.1, clinical progression, unacceptable toxicity, the start of new anticancer treatment, study discontinuation, or any other criteria for withdrawal from the study or study drug, or for a maximum of 2 years, whichever occurs first.

Expansion Cohorts – Treatment with MICVO 5.4 mg/kg IV Q3W

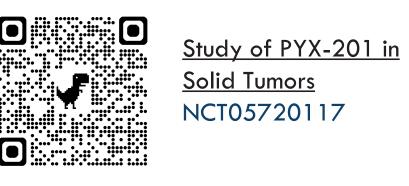
PROs

Key Inclusion Criteria

- Histologically or cytologically confirmed squamous cell carcinoma
- Locally advanced recurrent/metastatic disease progression on SoC
- RECIST v1.1 measurable disease
- ECOG PS 0-1

STUDY DESIGN

- HNSCC patients must have received at least 1 but no more than 2 prior lines of systemic therapy for recurrent and/or metastatic disease, with oropharynx, oral cavity, hypopharynx, or larynx as primary tumor locations:
 - Arm 1: have received platinum-based therapy and a PD-1 inhibitor
 - > Arm 2: have received one prior PD-1 inhibitor and one prior EGFR-directed therapy


Key Exclusion Criteria

- Primary HNSCC tumor sites of nasopharynx or sinonasal (any histology)
- Any active or prior CNS metastases
- Known active HBV, HCV, HIV or AIDS

General changes to PRO measures

- Failure to recover to CTCAE v5.0 G \leq 1 from acute non-hematologic toxicity due to previous therapy
- Previous or active pneumonitis / interstitial lung disease (ILD) requiring steroids

	Objectives	Endpoints
PRIMARY	Determine the ORR	ORR by Investigator per RECIST v. 1.1
SECONDARY	 Evaluate antitumor activity Assess PK Evaluate safety profile Characterize immunogenicity 	 DOR, DCR, CBR, TTR by Investigator per RECIST v. 1.1 PK parameters: C_{max}, T_{max}, C_{trough} Incidence of AEs characterized overall and by type, seriousness, relationship to study treatment, timing, and severity Change in clinical laboratory parameters and vital signs Incidence of ADAs
EXPLORATORY	 Explore predictive and pharmacodynamic biomarkers 	 Expression of EDB+FN Exploratory biomarkers

ACKNOWLEDGEMENTS

The study is sponsored by Pyxis Oncology Inc. The authors thank all our patients and their families for their participation, and all research sites and CRO personnel for their support of the study.

ABBREVIATIONS MMAE: Monomethyl Auristatin E

ADC: Antibody-drug conjugates

PDX: patient-derived xenograft

EDB+FN: extra-domain-B fibronectin

TRAEs: treatment related adverse events

85(8_Supplement_1), 3137-3137.

- Hooper et al., Mol Cancer Ther 2022 Sep 6;21(9):1462-1472. 2. Graziani et al., Mol Cancer Ther 2020 Oct: 19(10):2068-2078.
- 3. Tolaney SM. Trodelvy plus Keytruda as a potential new standard of care for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer. [Abstract for ASCENT-04/KEYNOTE-D19 study]. Presented at: 2025 American Society of Clinical Oncology Annual Meeting; May 31-June 4, 2025; Chicago, IL
- 4. Lam et al., Cancer Res 2014 Oct; 74(19 Supplement):4837) 5. Lewandowski, et al; Abstract 2908: EDB+FN is an attractive therapeutic target in oncology: Insights from protein expression analysis of solid tumors. Cancer Res 15 March 2024; 84 (6_Supplement): 2908.
- 6. Facklam at al., Cancer Res 2025 Apr 85 (8_Supplement_1): 3120.
- 7. Rodriguez, A. et al., The combination of anti-PD1 and a mouse analog of PYX-201, an antibody-drug conjugate targeting the extra-domain B splice variant of fibronectin (EDB+ FN), shows greater anti-tumor efficacy than either treatment alone. Cancer Research,

DECLARATIONS OF INTEREST DRP received honorarium or funds for advisory/consulting from: None

For additional questions on the study, please contact: Aymen Elfiky, MD <AElfiky@pyxisoncology.com> Gregory M. Cote, MD, PhD <GCOTE@mgh.harvard.edu>